
Bounding the Set of Solutions of a Perturbed
Global Optimization Problem

E. R. HANSEN
654 Pace Dr., Los Altos, CA 94024, U.S. A

(Received: 15 April 1991; accepted: 4 May 1991)

Abstract. Consider a global optimization problem in which the objective function and/or the con-
straints are expressed in terms of parameters. Suppose we wish to know the set of global solutions as
the parameters vary over given intervals. In this paper we discuss procedures using interval analysis for
computing guaranteed bounds on the solution set. This provides a means for doing a sensitivity analysis
or simply bounding the effect of errors in data.

Key words. Global optimization, sensitivity analysis, error analysis, interval analysis, perturbations.

1. Introduction

Let c denote a vector of some number, S, of parameters. Consider a global
optimization problem depending on c in which we wish to find the point(s) x in R”
to

minimize (globally) f(x, c)

subject to pi(x, c) G 0 (i = 1, . . . , m) ,

qi(x, c) = 0 (i = 1, . . .) r) .
(1.1)

We allow m = 0 and/or r = 0. Therefore, the problem may be constrained or
unconstrained.

Let x*(c) denote a solution point of (1.1); and let f*(c) denote the globally
minimum value of f(x, c). That is,

Y(c) = m*(c), c> .

We consider the case in which each component ci (i = 1, . . . , S) is allowed to
vary over an interval Cj. Thus, there is a set of solutions

x*(c) = {x*(c): c E C]

and a set of globally minimum values

f*(c) = {f*(c); c E Cl

of the objective function. (The notation c E C indicates that ci E C, for all
i = 1, . . .) S.)

Define a box to be a vector of intervals. Let X*(C) denote the smallest box
containing the set, x*(C), of solution points.

In this paper, we given an algorithm which computes lower and upper bounds

Journal of Global Optimization 1: 359-374, 1991.
0 1991 Kiuwer Academic Publishers. Printed in the Netherlands.

360 PERTURBED GLOBAL OPTIMIZATION PROBLEM

on f*(C) and on the components of X*(C). These bounds are guaranteed to be
correct despite the presence of roundoff and approximation errors. The lower
bound on f*(C) is always sharp (except for small roundoff and approximation
errors). We shall sometimes be able to prove that the upper bound on f*(C) and
the lower and upper bounds on X*(C) are sharp, as well. The guarantees of
correctness are made possible by the use of interval analysis.

The algorithm provides a means for bounding the solution of a problem in
which parameters are uncertain because of measurement errors, for example.

It also provides a means for doing sensitivity analysis. By entering parameters
as intervals, we determine how much the global solution varies (in position and
value of the objective function) as the parameters vary over their bounding
intervals.

In [3], the author described a procedure for solving the perturbed problem
(1.1). In Section 2, we call this the “basic algorithm”. In the present paper, we
give a more general procedure. The essential part of the generalization is given in
Section 5.

In Section 2, we describe a “basic algorithm” which uses interval methods to
solve the global optimization problem. In Section 3 we give a condition which
must be satisfied in order for the method described in this paper to be most
useful. The Kuhn-Tucker conditions are discussed in Section 4. Section 5 is the
raison d’gtre for this paper. It contains the procedure for bounding the solution
set. Sections 6 and 7 give a means of validating the procedure. Section 8 discusses
options for use of the procedure. Sections 9 and 10 contain numerical examples.

2. Global Optimization Algorithm Using Interval Analysis

In this paper, we assume the reader has a basic knowledge of interval analysis. For
an introduction to the subject, see [9], for example.

Methods using interval analysis exist for solving the global optimization prob-
lem for constrained or unconstrained problems. These methods guarantee that the
global solution has been found. All errors are taken into account including
rounding and approximation errors.

For the simplest of such method, no differentiability is needed, see [lo], [12].
However, efficiency is much greater for the algorithms which use derivatives.

For an introduction to interval global optimization algorithms, see [4]. A survey
is given in [7]. Algorithms for the unconstrained, inequality constrained, and
equality constrained cases are given in [2], [5], and [6], respectively. More detailed
algorithms will appear in the author’s forthcoming book Global Optimization
Using Interval Analysis.

For the basic algorithm discussed later in this section, we assume that the
constraint functions are continuously differentiable with respect to x and that the
objective function is twice continuously differentiable with respect to x. Thus, we
are able to use the most efficient algorithms. For example, we are able to apply an

E. R. HANSEN 361

interval Newton method to solve the Kuhn-Tucker conditions. No differentiabili-
ty with respect to the parameter vector, c, is required.

For the procedure to be introduced in Section 5, we require the constraint and
objective functions to have three and four continuous derivatives, respectively,
with respect to x. We also require (for this procedure) that these functions be
twice continuously differentiable with respect to the parameter vector, c.

We shall give only a bare outline of these algorithms. The important feature is
that they produce an interval guaranteed to contain the globally minimum value
of the objective function. They also produce a box (or boxes) guaranteed to
contain the global solution point(s).

The ability to solve global optimization problems by interval methods is a result
of the following theorem due to Moore. (See, for example, [9].) It has come to be
called the fundamental theorem of interval analysis. See [9], for example, for
definitions of the terms used.

THEOREM 2.1. Let F(x) be an inclusion monotonic interval extension of a real
function, f(x). Let X be an interval vector. Then F(X) contains the range of f(x) for
all x E X.

The global optimization algorithms proceed as follows:
Begin with a box, X(O), large enoug h to contain any point of global minimum.
Using fail-safe procedures, delete sub-boxes of this original box which are proved
by interval procedures to not contain a point of global minimum. Stop when the
remaining box of boxes satisfy given termination conditions.

During the solution process, we determine and continually improve an upper
bound, 7, on the global minimum, f *. This is done by sampling values of f(x, c) at
points in X(O) proved to be feasible.

If there are no equality constraints, it is a simple procedure to prove feasibility
of a point using rounded interval arithmetic. Hansen and Walster [6] show how to
prove feasibility when there are equality constraints and rounding is present.

We now list the primary procedures used for deleting a sub-box, X, of X(O).

(1) Delete X if f(x, c) >f, for all x E X.
(2) If X is in the interior of the feasible region, delete X if

(a) A component of the gradient of f(x, c) is nonzero for every point, x, in X.
(This assures that there is no stationary point of f(x, c) in X.)

(b) A diagonal element of the Hessian of f(x, c) is negative for every point, x,
in X. (This assures that f(x, c) is not convex at any point in X.)
(3) Delete X if no point in X is feasible.
(4) Apply a step of an interval Newton method to solve the Kuhn-Tucker
equations over X. (This procedure either deletes all of X or, in effect, deletes the
part of X not retained.)

Theorem 2.1 makes it possible to implement these steps as a practical al-
gorithm.

362 PERTURBED GLOBAL OPTIMIZATION PROBLEM

The algorithm is efficient and outstandingly robust. In [13], an instance was
reported in which failure occurred because only internal storage was used on the
computer; and the algorithm ran out of space. A later version of the algorithm
solved the problem with no difficulty. The author has never observed any kind of
failure of the algorithm on any other problem.

It is possible (and has been done) to write a program which solves the general
problem (1.1) or any special case of it (such as the unconstrained case). We shall
assume such an algorithm is used and refer to it as “the basic algorithm”. We shall
not always be specific about whether the problem being discussed is unconstrained
or constrained. For the constrained case we shall not be specific about what kind
of constraints occur.

The sharpness of the bounds computed by the basic algorithm depends on
tolerances specified by the user. In the algorithm discussed below, the basic
algorithm is first used to solve (1.1) with loose tolerances to get crude bounds on
the solution value and points. Then a separate computation (see Section 5) is used
to obtain bounds on X*(C) and f*(C).

One tolerance which must be specified in the global optimization algorithm is a
number, F~. The basic algorithm computes a box (or set of boxes) which contains
a global solution point. If there is more than one global solution point, the
algorithm computes a set of boxes containing each of them. Each component of
each such box will be an interval whose width is less than or equal to Ed.

The other tolerance is a bound, Ed, on how much the objective function,
f(x, c), can change over an output box. That is, the basic algorithm assures that
for each output box, X,

(2-l)

The basic algorithm can solve the perturbed problem in which the parameter
vector, c, is replaced by an interval vector, C. The solution set will be covered by
a set of boxes whose largest component is of width GE,. See [3].

In fact, the basic algorithm treats all problems as if they were perturbed. This is
necessary if correctness is to be guaranteed. The reason is that problems often
involve transcendental parameters, such as 7rTT, which cannot be represented in a
computer’s number system. Therefore, they are replaced by intervals which
bound them. Also, irrational functions are approximated by rational functions;
and the approximation error is bounded by an interval.

If the solution set is large or if Ed is small, the output will be a large number of
boxes and a lot of computing will be necessary to generate them.

In the perturbed case, the algorithm assures that

rnn; f(x, c) - n-A: f(x, c’) s EF .
CEC C’EC

(2.2)

E. R. HANSEN 363

Note that the left member is generally nonzero in the perturbed case even if X is a
single point. Therefore, if Ed is chosen too small, it is impossible to satisfy (2.2).

Thus, when solving the perturbed case in practice, it is best to choose Ed
relatively large and let Ed drive the termination process. Hereafter, we assume
this is the case.

The main purpose of this paper is to present an algorithm which computes
guaranteed bounds on the smallest box containing the solution set (or a set of
such boxes if the solution set consists of disjoint subsets). The virtue of the
method is that it avoids computing a large number of small boxes covering the
solution set. We show that in certain cases, we can prove that the bounding box is
the smallest one containing the solution set.

The drawback is that the solution set is not as well defined. However, the actual
shape of the solution set is probably of little interest in practice. If the shape is
important, the basic algorithm can be used with a small box size tolerance. If only
the size of the solution set is of interest, the algorithm to be given in Section 5
provides it with what is generally less computing.

3. A Condition

As pointed out above, the basic algorithm will solve the perturbed problem.
Suppose we do so using a relatively large value of Ed. The result will be one or
more relatively large boxes covering the solution set. Denote the box(es) by X’.

In order for all the bounds on f*(C) and X*(C) to be sharp, X’ must not
contain a local (non-global) solution of the optimization problem (1.1) for any
c E C. For a given example, we may or may not be able to prove that this is
correct. See Section 7. However, there are reasons to expect that the bounds will
be fairly sharp in all cases.

It is probably true that, in most problems in practice, the local solutions are
sufficiently far from the global solution that X’ will not contain a local solution
unless Ed is much too large. Even as it does, any local solution point lying near
the global solution point should be “nearly global” and our error is small. For a
numerical example, see Section 10.

Despite this uncertainty, our algorithm produces a sharp lower bound on
f *cc>.

4. The Kuhn-Tucker Conditions

A necessary condition for a point, x, to be a solution to the global optimization
problem (1.1) is that the Kuhn-Tucker conditions be satisfied at x. That is, the
function F(x, c) must be zero, where

364 PERTURBED GLOBAL OPTIMIZATION PROBLEM

(4.1)

and ui (i = 1,. . , m) and ui (i = 1,. . . , Y) are Lagrange multipliers. We make use
of this condition later.

The Kuhn-Tucker conditions also include the requirement that the Lagrange
multipliers, U, (i = 1, . . . , m), be nonnegative.

When using the Kuhn-Tucker conditions, we must also consider constraint
qualifications. An interval global optimization algorithm using the Fritz John
conditions is given in [8]. See also [7]. This avoids the need for assuming the
constraint qualifications hold. However, for the interval algorithm using the John
conditions, we require special attention to normalization of the Lagrange multi-
pliers. To avoid discussing normalization in this paper, we simply assume the
constraint qualifications hold.

5. The Procedure

We obtain bounds on f*(C) and X*(C) by solving a set of problems. We solve
one problem to obtain an upper bound on f*(C); we solve a different one to
obtain the lower bound. We solve separate problems to obtain an upper or a lower
bound on each component of X*(C).

Thus, to bound both f*(C) and X*(C), we must solve 2n + 2 problems.
However, they are solved over the small region, X’, obtained by the basic
algorithm when solving (1.1) with c replaced by the interval vector, C. Therefore,
convergence is very fast.

The problems to be solved are unperturbed. Therefore, they can be solved
quite sharply by the basic algorithms.

To obtain a lower bound on f*(C), we solve the following problem:

mirnmize (globally) f(x, c) (5.1)

subject to pi(x, c) G 0 (i = 1, . . . , m) ,

q;(x,c)=O (i=l,. . . ,Y),

CEC.

Note that the parameters, ci (i = 1, . . , s) now enter as variables. Therefore,
the new problem is of higher dimension than the original one. However, C will

E. R. HANSEN 365

generally be a small box since perturbations or uncertainties in c are usually small.
As a result, the search for a global minimum is made over a small set of values for
both x and c; and convergence is rapid.

The condition x E X’ is not imposed as a formal constraint. It merely restricts
the search made by the basic algorithm.

To obtain an upper bound on f*(C), we solve the following problem:

ma$-rize (globally) f(x, c) (5.2)

subject to c E C ,
F(x, c) = 0 .

Again, the search is restricted to the region X’.
Note that we have introduced the Kuhn-Tucker condition F(x, c) = 0 as a

constraint. In so doing, we are assuming that any Kuhn-Tucker point in X’ is a
global solution to (1.1). The smaller we make eX when “solving” the original
problem (l.l), the more likely it is that this assumption is correct. In Section 10,
we given an example in which this assumption is incorrect.

If some Kuhn-Tucker point in X’ is not a global solution to (1.1)) solving (5.2)
still yields an upper bound on f*(C). However, it may not be sharp enough to be
useful.

In Section 6, we discuss how it may be possible to prove that a solution in X’ is
unique and, therefore, global.

To obtain the left endpoint of the i-th component, XT(C) (i = 1, . . , n), of
X*(C), we solve the problem:

mirnmize (globally) xi (5.3)

subject to c E C ,
F(x, c) = 0.

Again, we restrict the search to the region X’.
To obtain the right endpoint of the i-th component of X*(C), we solve the

problem:

max&ze (globally) xi

subject to c E C ,

F(x, c) = 0

with x E X’.

(5.4)

6. Uniqueness

In this section, we discuss a theorem which will be useful in later sections. The
theorem provides a means for proving computationally that the solution to an
optimization problem is unique.

366 PERTURBED GLOBAL OPTIMIZATION PROBLEM

We shall consider the problem of solving the Kuhn-Tucker condition F(x, c) =
0. Since the Lagrange multipliers are also variables in such a problem, we should
write the equation as f(x, U, u, c) = 0. However, the Lagrange multiplier variables
enter in the same way as the variable, x. Hence, for simplicity, we omit explicit
reference to them and simply write f(x, c) = 0.

Note that when we solve (1.1) using the basic algorithm, we obtain guaranteed
bounds on the Lagrange multipliers. See [8].

Suppose we apply an interval Newton method to solve the Kuhn-Tucker
condition F(x, c) = 0 where F(x, c) is given by (4.1). Assume we seek a solution
in a given box, X, for all c E C. Let J(x, c) denote the Jacobian of F(x, c).

Following standard practice in interval analysis, we linearize F(x, c) about some
point x’ E X and obtain the equation

F(x’, c) + J(X, c)(y - x’) = 0 . (6.1)

to be solved for y. As is well known (e.g., see [ll]), the set of solution points, y,
of (6.1) contains any solution of li(x, c) = 0 in X.

The following theorem is also well known. See, for example, [ll].

THEOREM 6.1. ZfJ(X, c) d oes not contain a singular matrix, then any solution
of F(x, c) = 0 in X is unique.

If, in the Jacobian, we replace the real vector, c, by the box, C, containing it,
then Theorem (6.1) becomes

THEOREM 6.2. Zf .Z(X, C) d oes not contain a singular matrix, then any solution
of F(x, c) = 0 in X is unique for a given value of c E C.

Let m[J(X, C)] d enote the center of .Z(X, C). That is, if the element in position
(i, j) of .Z(X, C) is [a, b], then the element in position (i, j) of m[J(X, C)] is
(b + a) /2.

When solving (6.1) it is common practice (and generally necessary for
accuracy) to precondition the equation by multiplying by an approximate inverse,
say B, of m[J(X, C)]. The preconditioned equation is

M(X, C)(y - x’) = r(x’, C) (6.2)

where M(X, C) = B./(X, C) and r(x’, C) = - BF(x’, C). The center of M(X, C)
approximates the identify matrix.

The solution set of (6.2) contains the solution set of (6.1). See [lo]. If M(X, C)
does not contain a singular matrix, then neither does .Z(X, C).

Preconditioning “drives” the coefficient matrix toward the identity matrix and,
thus, toward diagonal dominance. If M(X, C) is strictly diagonally dominant,
then it does ,not contain a singular matrix.

E. R. HANSEN 367

An interval matrix, A, of order IZ with elements aii = [a$, ~$1 is said to be
strictly diagonally dominant if

Jfi

where

IaiiI=max{)a~I,Ia~I}.
Every real matrix contained in a strictly diagonally dominant interval matrix is
strictly diagonally dominant in the usual sense. Note that every such real matrix is
nonsingular.

Suppose we have a solution box, X’, obtained using the basic algorithm and,
thus, known to contain the global minimum of f(x, c) for all c E C. Therefore, it
contains a solution to F(x, c) = 0 (i.e., a Kuhn-Tucker point) for all c E C.

Suppose we linearize the Kuhn-Tucker function, F(x, c), and obtain (6.1)
(with X replaced by X’). Suppose the preconditioned coefficient matrix (see
(6.2)) is strictly diagonally dominant. Then, by Theorem 6.2, the Kuhn-Tucker
point is unique for each c E C.

That is, we know that X’ does not contain a local minimum of f(x, c). The only
minimum it contains is the one known to be global.

7. Assuring Validity

In Section 5, we gave problems whose solutions yielded bounds on f*(C) and
X*(C) provided certain conditions were satisfied. In this section, we discuss how
we can check in practice whether these conditions are satisfied.

We first consider the case in which the output, X’, when solving (1.1) is a single
box. Alternatively, it may consist of a set of abutting boxes which cannot be
separated into two or more strictly disjoint subsets.

In the latter case, we shall replace X’ by the smallest box containing X’ (and
again call the result X’). Thus, the case we are considering is when X’ is (or has
become) a single box.

This box contains the global minimum point (or points) for all c E C. There-
fore, solving problem (5.1) over X’ will always yield a correct lower bound on
f*(C). This is true even if X’ contains a local minimum or more than one point of
global minimum.

However, to get the other desired bounds by solving (5.2), (5.3), and (5.4), we
must assure that X’ does not contain a Kuhn-Tucker point which is not the global
minimum. This assurance can be obtained by computing M(X’, C) (see Section 6)
and verifying that it is strictly diagonally dominant. If M(X’, C) is not strictly
diagonally dominant, we do not know whether the bounds from (5.2), (5.3), and
(5.4) will be sharp or not.

In this failed case, we have two options. First, we can go ahead and solve
equations (5.2), (5.3), and (5.4) over X’. Equation (5.2) will yield a lower bound

368 PERTURBED GLOBAL OPTIMIZATION PROBLEM

on f*(C) and (5.3) and (5.4) will yield lower and upper bounds, respectively, on
x*(C). However, we will not know whether these bounds are sharp.

Secondly, we can split X’ into two sub-boxes. For a sub-box, X, of X’, the
interval elements of M(X, C) will generally be narrower than those of M(X’, C).
Therefore, it may be possible to verify that M(X, C) does not contain a singular
matrix. By covering X’ with sub-boxes such as X, we may be able to obtain the
desired results. Note that if M(X’, C) does contain a singular matrix, then
M(X, C) will contain a singular matrix for at least one of the boxes, X, covering
X’.

However, subdividing X’ introduces a new difficulty. We now consider the case
in which X’ is either composed of disjoint subsets or is subdivided as just
suggested. For simplicity, assume X’ consists of two boxes, Y and Z.

It may be that, for a given value of c, the box Y contains a global solution and
Z contains another Kuhn-Tucker point (or vice versa). In such a case, the basic
algorithm assures that the value of the objective function at the Kuhn-Tucker
point in Z will differ little from the globally minimum value. Assurance is
provided by step (1) of the basic algorithm given in Section 2.

Recall that, for the perturbed problem we are considering, we use loose
termination criteria in order to prevent the basic algorithm from computing too
large a number of small boxes to cover the solution set. Unfortunately, the looser
the termination tolerances, the greater the difference between the value of f(x, c)
at the global solution in Y and at the Kuhn-Tucker point in Z.

If X’ is composed of more than one subset, we must accept the possibility that
we may not obtain a sharp upper bound on f*(C) when solving (5.2) or sharp
bounds on x*(C) when solving (5.3) and (5.4). The sharpness will depend on the
tolerances chosen when solving (1.1) using the basic algorithm. We have no
guidelines to offer in choosing the tolerances.

If both Y and Z contain global solutions and no other Kuhn-Tucker point, then
(5.3) and (5.4) will yield sharp bounds on X*(C). Unfortunately, we will not
know whether this is true or not.

Even if the minima in Y and Z are both global, we camrot know that the upper
bound on f*(C) obtained from (5.2) is sharp. It may be that a point in Y which is
global for a given value of c E C is only local for another value of c. This can
occur if the global solution point jumps to Z as c changes. We given an example
of this kind in Section 10.

Note that, despite all the uncertainty in the case in which X’ is composed of
disjoint sets, some certainties remain. The bounds will always be correct. They
will be reasonably sharp unless the tolerances used in the basic algorithm are
large.

It may be that Z (say) does not contain a minimum for any value of c E C. The
uncertainty introduced by using the interval vector, C, in place of a real vector, c,
when applying the basic algorithm could cause such a box to be retained. This

E. R. HANSEN 369

causes no difficulty. The constraints in problems (5.2), (5.3), and (5.4) assure that
the only solutions to these problems are Kuhn-Tucker points of the original
problem (1.1).

8. Procedure

The solutions to the problems in Section 5 do not always provide sharp bounds on
f*(C) and X*(C). Th e exception is problem (5.1). Its solution always provides a
sharp lower bound on f*(C). How we proceed in getting the bounds must depend
on how sharp we wish the bounds to be. We now consider the options.

No matter how sharp we want the bounds to be, we begin by applying the basic
algorithm to solve (1.1). We do so using relatively large values of the termination
parameters.

Since we do not know the nature of the solution in advance, it is probably
impossible to know, in general, the best choices for values of the parameters. In
practice, we have taken the unsatisfactory step of using human intervention.
However, our procedure could probably be automated satisfactorily.

We first solve problem (1.1) with large values of the tolerances. If there are too
few solution boxes, we reduce the tolerances and let the basic algorithm continue.
In effect, we use the output of the first run as input for the second. Thus, there is
not any extra computing involved in stopping and restarting.

Suppose the solution consists of a “satisfactory” number of boxes. Suppose the
boxes cannot be separated into strictly disjoint subsets. Let X’ denote the smallest
box containing all of them. If M(X’, C) (see Section 6) is strictly diagonally
dominant, we solve (5.1) through (5.4) knowing that they will produce sharp
bounds.

If M(X’, C) is not strictly diagonally dominant, we have two options. We have
the same options in the case in which the output of the basic algorithm consists of
boxes which form strictly disjoint subsets. We can solve (5.1) through (5.4) as
before. In this case, we are accepting bounds which may not be sharp.

Alternatively, we can reduce the termination tolerances to small values and
cover the solution set by many small boxes using the basic algorithm. For small
tolerances, the basic algorithm will thus provide relatively sharp bounds on f*(C)
and X*(C).

We have no guidelines to recommend on which option a user should select.

9. First Numerical Example

We now consider an example of a perturbed problem which arose in practice as a
chemical mixing problem. It is an equality constrained least squares problem given
by

370 PERTURBED GLOBAL OPTIMIZATION PROBLEM

minimize (globally) f(x) = z$I (xi - pi)’

subject to x1&l = x2x14 + x3x4 >

x1x10 = x2x15 + x3x5 ,

x1x11 = x2x16 + x3xtj >

x1x12 = x2xl7 + x3x7 ,

x1x13 = x2xl8 + x3x8 3

x4 + x5 + X6 + x7 + x* = 1)

xg + Xl0 + x1* + Xl2 + Xl3 = 1)

x14 + xl5 + x16 + xl7 + x18 = 1 >

xl4 = 66.67x4 ,

Xl5 = 50X,)

Xl6 = 0.015x,)

Xl7 = 100x,)

Xl8 = 33.33x, .

The parameters and their uncertainties are given in the following table.

i P,

1 100 k 1.11
2 89.73 +- 1.03
3 10.27 2 0.51
4 0.0037 2 0.00018
5 0.0147 k 0.0061
6 0.982 f 0.032
7 0 FO
8 0.0001+ 0
9 0.22 f 0.0066

10 0.66 2 0.017
11 0.114 f 0.0046
12 0.002 +- 0.0001
13 0.004 2 0.00012
14 0.245 ” 0.0067
15 0.734 + 0.02
16 0.0147 i 0.0061
17 0.0022 + 0.0001
18 0.0044 I!? 0.0013

We solved this problem on a CYBER 175. To do so, we used the constraints to
explicitly eliminate variables and reduced the problem to an unconstrained
problem in five variables. We first solved the unperturbed case. We obtained the
solution point with 12 digits of guaranteed accuracy in 0.54 seconds. The
minimum value off was found to be f* = 3.07354796 x 10e7 + 2 x 10Pr5.

We then solved the perturbed case with loose tolerances using the same initial

E.R.HANSEN 371

box. The algorithm took 3.0 seconds to obtain a set of 59 boxes covering the
solution set. The smallest box (call it X’) containing these 59 boxes is given in the
following table.

i x:

1 [96.2,103.8]
2 [87.7,91.7]
3 [8.47,12.07]
4 [0.0035,0.00384]
5 [0.0142,0.0152]
6 [0.98142,0.98147]
7 [-0.000205,0.000249]
8 [-0.000384,0.000645]
9 [0.1983,0.2440]

10 [0.6046,0.7207]
11 [0.0603,0.1638]
12 [-0.0174,0.0237]
13 [-0.0109,0.0205]
14 [0.2338,0.2559]
1.5 [0.7122,0.7556]
16 [0.0147,0.0148]
17 [-0.0205,0.0249]
18 [-0.0128,0.0215]

We obtained the crude interval [0,2.556] bounding f*(C).
By applying the method described in Section 7 using the above box, X’, we

showed that any solution (of the original minimization problem) in X’ was unique
for each c E C. Therefore, we know that the problems in Section 5 will yield
precise bounds on f*(C) and X*(C).

We did not do the computations. It seems certain that they could be carried to a
successful completion. In the author’s ten years of experience on global optimiza-
tion, no failure an interval algorithm on any problem has occurred. A previously
reported failure was apparently due to a programming error. See [lo].

10. Second Example

AS a second numerical example, we consider a two-dimensional unconstrained
problem. The objective function is

f(x, c) = 12x; - 6.3x; + cx; + 6x,(x, + x2) .

For c = 1, this is the (negative of) the so-called three hump camel function. See,
for example, [l].

We perturb the problem by letting c vary over the interval C = [0.9, 11. For all c
for which 0.945 < c < 1, the global minimum is the single point at the origin; and
f* = 0 at this point. For c = 0.945, there are three global minima. One is at the
origin. The others are at &(a, -u/2) where a = (10/3)“*. For c < 0.945, there are

372 PERTURBED GLOBAL OPTIMIZATION PROBLEM

two global minima at ?(b, -b/2) where

b = {[4.2 + (17.64 - 14~)“~]/(2c)}“~

At each of these two points, f has the negative value

f* = [22.05c - 18.522 + (3.5~ - 4.41)(17.64 - 14c)“‘] /c2 .

The smallest value off* for c E [0.9, l] occurs for c = 0.9 where f* = -1.8589,
approximately.

Consider perturbing the problem continuously by letting c increase from an
initial value of 0.9 to a final value of 1. Initialty, there are two global solution
points. Each moves along a (separate) straight line in the x1, x,-plane until
c = 0.945. As c passes through this value, the global solution jumps to the origin
and remains there for all c E [0.945,1].

The discontinuous movement of the points of global solution creates no
difficulty for the basic algorithm. Each point which is a global solution for any
c E C is contained in the solution set.

The solution set consists of three parts. One part is the origin. Another is the
line segment joining the points (a, -u/2) and (b’, -b’/2) where b’ = {[21 +
(126)1’2]/9}1’z. The third is the reflection of this line segment in the origin.

The smallest (disjoint) boxes which can cover the three parts of the solution set
are

We solved this problem with c replaced by the interval [0.9, l] using the basic
algorithm. The search was made in the box defined by -2 6 xi G 4 (i = 1,2). We
chose the box size tolerance, Ed, to have the relatively large value 0.1 so that the
solution set would be covered by only a few boxes. We chose the tolerance, .sF, to
have the very large value lo5 so that it would play no part in the termination
process (for reasons discussed in Section 2).

The basic algorithm (see [2]) took 45 steps to produce a set of 11 boxes
covering the solution set. The computing time was 0.18 seconds on a CYBER 175
computer. One output box was the degenerate box equal to the point at the
origin. Thus, one subset of the solution set was obtained exactly.

The solution subset consisting of the line segment joining the points (a, -a/2)
and (b’, -b’/2) was covered by five “solution” boxes. Let X(l) denote the
smallest box which can cover these five boxes. We obtained

x(l) =
[

[1.739,1.896] 1 [0.856,0.968] ’

The smallest box covering the line segment of true solution points has compo-
nents X, = [1.825, 1.8931 and X, = [0.9128, 0.94621. Thus, in a sense, the
computed covering was not far from optimal.

E. R. HANSEN 373

The solution subset consisting of the line segment joining the points (-a, a/2)
and (-b’, b’/2) was quite similarly covered by five “solution” boxes. Let Xc2)
denote the smallest box containing these five boxes.

The interval computed to bound f*(C) was [-4.781,0]. The correct interval is
[-1.859,0]. This result is far from sharp because we chose the tolerance cF to be
so large.

The computed “solution” set has disjoint subsets. Therefore, we must be
concerned that one or more component may contain a local (non-global) mini-
mum. This is, in fact, the case.

For this example, the origin is the only global solution point when c > 0.945.
The boxes X(l) and Xc2) contain points which are global minima for c d 0.945 and
local minima for c > 0.945. Therefore, problems (5.2), (5.3), and (5.4) cannot
yield sharp bounds.

If we were to solve (5.2) in the box X(l) to obtain an upper bound on f*(C),
we would obtain a value of 1.7918, approximately. This is far from sharp. The
correct value is zero.

If we were to solve (5.3) and (5.4) over X(l) for bounds on X*(C), we would
obtain the box

[
[1.7475, 1.89231

[-0.94612, -0.873771 1
approximately. The correct box for this subset of X*(C) to five decimals is

[
[1.8257, 1.89231 1 [-0.94612, -0.912871 ’

Similar results would be obtained using the subset Xc2!
Solving (5.1) gives the correct lower bound on f*(C), which is approximately

-1.8589.
Thus, we see that solving for bounds on f*(C) and X*(C) using the procedure

in Section 5 will give correct bounds. However, some of them are far from sharp.
When the basic algorithm produces disjoint subsets of solution boxes (such as in

this example), we have no way of knowing whether the procedure in Section 5
will yield sharp bounds on f*(C) and X*(C) or not. The user must decide
whether to use this procedure and perhaps obtain less than sharp results or to
cover the solution set with small boxes using the basic algorithm.

References

1. Dixon, L. C. W. and SzegB, G. P. (1975), Towards Global Optimization, North Holland/
American Elsevier, New York.

2. Hansen, E. R. (1980), Global Optimization Using Interval Analysis - the Multidimensional Case,
Numerische Mathematik, 247-270.

3. Hansen, E. R. (19&T), Global Optimiation with Data Perturbations, Comput. Ops. Res. II.
97-104.

374 PERTURBED GLOBAL OPTIMIZATION PROBLEM

4. Hansen, E. R. (1988), An Overview of Global Optimization Using Interval Analysis, pp. 289-307
in Moore, R. E. (ed.), Reliability in Computing, Academic Press, Boston.

5. Hansen, E. R. and Sengupta, S. (1980), Global Constrained Optimization Using Interval
Analysis, pp. 25-47 in Nickel, K. L., (ed.), Interval Muthemntics 1980. Academic Press, New
York

6. Hansen, E. R. and Walster, G. W. (1992), Equality Constrained Global Optimization, accepted
for publication.

7. Hansen, E. R. and Walster, G. W. (1992), Nonlinear Equations and Optimization, to appear in
the Second Special Issue on Global Optimization, Control and Games of Comput. Math. Appl.

8. Hansen, E. R. and Walster, G. W. (1992), Bounds for Lagrange Multipliers and Optimal Points,
to appear in the Second Special Issue on Global Optimization, Control and Games of Comput.
Math. Appl.

9. Moore, R. E., (1979), Methods and Applications of Interval Analysis, SIAM Publ., Philadelphia.
10. Moore, R. E., Hansen, E. R., and Leclerc, A. (1992), Rigorous Methods for Parallel Global

Optimization, to appear in Recent Advances in Global Optimization, Princeton Univ. Press.
11. Neumaier, A. (1990), Interval Methods for Systems of Equations, Cambridge Univ. Press.
12. Ratshek, H. and Rokne, J. (1988), New Computer Methods for Global Optimization, Halstead

Press, New York.
13. Walster, G. W., Hansen, E. R., and Sengupta, S. (1985), Test Results for a Global Optimization

Algorithm, pp. 272-287 in Boggs, P. T., Byrd, R. H., and Schnabel, R. B. (eds.), Numerical
Optimization 1984, SIAM Publ.

